Description
Given n distinct positive integers, integer k(k<=n) and a number target. Find k numbers where sum is target. Calculate how many solutions there are?
Example
Given[1,2,3,4]
, k =2
, target =5
. There are2
solutions:[1,4]
and[2,3]
. Return2
.
Solution
三维动态规划。dp[i][j][t]表示前i个数中取j个数相加为t的组合个数,取决于包括第i个数和不包括第i个数两种情况。
状态方程 dp[i][j][t] = dp[i-1][j][t] + dp[i-1][j-1][t-A[i]](t >= A[i])
初始状态dp[i][0][0] = 1, 0 <= i <= A.length
(凡是求count的初始状态都是1)
public class Solution {
/**
* @param A: an integer array.
* @param k: a positive integer (k <= length(A))
* @param target: a integer
* @return an integer
*/
public int kSum(int A[], int k, int target) {
// write your code here
int[][][] dp = new int[A.length+1][k+1][target+1];
for (int i = 0; i <= A.length; i++) {
dp[i][0][0] = 1;
}
for (int i = 1; i <= A.length; i++) {
for (int j = 1; j <= k; j++) {
for (int t = 1; t <= target; t++) {
dp[i][j][t] = dp[i-1][j][t];
if (t >= A[i-1]) {
dp[i][j][t] += dp[i-1][j-1][t-A[i-1]];
}
}
}
}
return dp[A.length][k][target];
}
}