Description
Given an integer matrix, find a submatrix where the sum of numbers is zero. Your code should return the coordinate of the left-up and right-down number.
Example
Given matrix
[
[1 ,5 ,7],
[3 ,7 ,-8],
[4 ,-8 ,9],
]
return[(1,1), (2,2)]
Solution
作为Subarray Sum的follow up,首先,取一个n+1* m+1的sum数组,sum[i][j]表示(0, 0), (0, i-1), (i-1, j-1), (i-1, 0)这个4个点组成的矩形的sum。初始状态为:sum[0][j] = sum[i][0] = 0, 状态方程为sum[i][j] = matrix[i-1][j-1] + sum[i-1][j] + sum[i][j-1] - sum[i-1][j-1]
再找sum为0的submatrix:如果(i1, j1), (i1, j2), (i2, j2), (i2, j1) 4个点组成的子矩阵sum为0,那么sum[i2][j2] - sum[i1][j2] - sum[i2][j1] + sum[i1][j1] = 0 ==> 对任意i1和i2,横向遍历,如果存在j1, j2两个纵坐标,使得j1与i1, i2相交时的势差和j2与i1, i2相交时的势差相等,则找到符合条中间的子矩阵,这里判断势差的相等可以和subarray sum一样用hashmap解决.
注意子矩阵左上角的顶点是exclusive的,而右下角的顶点是inclusive的,因此结果中左上和右下的坐标分别为(i1, j1), (i2-1, j2-1)
public class Solution {
/**
* @param matrix an integer matrix
* @return the coordinate of the left-up and right-down number
*/
public int[][] submatrixSum(int[][] matrix) {
// Write your code here
int[][] ret = new int[2][2];
int n = matrix.length;
int m = matrix[0].length;
int[][] sum = new int[n+1][m+1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
sum[i][j] = matrix[i-1][j-1] + sum[i][j-1] + sum[i-1][j] - sum[i-1][j-1];
}
}
for (int i1 = 0; i1 < n; i1++) {
for (int i2 = i1+1; i2 <= n; i2++) {
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int j = 0; j <= m; j++) {
int diff = sum[i2][j] - sum[i1][j];
if (map.containsKey(diff)) {
ret[0][0] = i1;
ret[0][1] = map.get(diff);
ret[1][0] = i2-1;
ret[1][1] = j-1;
} else {
map.put(diff, j);
}
}
}
}
return ret;
}
}