Description
Given an array of integers, find a contiguous subarray which has the largest sum.
Notice
The subarray should contain at least one number.
Example
Given the array[−2,2,−3,4,−1,2,1,−5,3]
, the contiguous subarray[4,−1,2,1]
has the largest sum =6
Solution
prefix的思路:
max[i][j] = sum[0][j] - min[0][i]. ==> sum[i] = sum[i-1] + nums[i]; max = Math.max(max, sum[i] - min); min = Math.min(min, sum[i]);
注意初始化不能写成sum[0] = 0 (sum[n+1]), max = Integer.MIN_VALUE, min = Integer.MAX_VALUE, 因为假如nums[0] < 0,在计算max=sum[0]-min时max会溢出成Integer.MAX_VALUE.一维动归:dp[i]表示包含第i个元素的所有subarray中最大的元素和。状态方程
dp[i] = max(dp[i-1] + nums[i], nums[i])
1.
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(int[] nums) {
// write your code
int[] sum = new int[nums.length];
sum[0] = nums[0];
int max = nums[0] - 0;
int min = Math.min(sum[0], 0);
for (int i = 1; i < nums.length; i++) {
sum[i] = sum[i-1] + nums[i];
max = Math.max(max, sum[i] - min);
min = Math.min(min, sum[i]);
}
return max;
}
}
2.
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(int[] nums) {
// write your code
int[] dp = new int[nums.length];
dp[0] = nums[0];
int max = dp[0];
for (int i = 1; i < nums.length; i++) {
dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);
max = Math.max(dp[i], max);
}
return max;
}
}